Connecting Algebra \& Geometry Through Coordinates WS 2

Name: \qquad Date: \qquad
The goal of this assignment is to use the distance and slope formulas to prove statements about geometric figures on the coordinate plane. Since the purpose is to prove a statement, you must show work.

1. Quadrilateral 1: Plot and label each point. $\mathbf{A}(-1,3), \mathbf{B}(3,1), \mathbf{C}(1,-2)$, and $\mathbf{D}(-3,0)$.
2. Definition: A parallelogram is a quadrilateral with two pair of opposite sides that are parallel. Using the definition of a parallelogram, prove that Quadrilateral 1 is a parallelogram. (Hint: Find the slopes of all the sides)
$A B$: \qquad
$B C$: \qquad
CD: \qquad
AD: \qquad
3. Definition: A rectangle is a parallelogram with four right angles. Using the definition of a rectangle, prove that Quadrilateral 1 is NOT a rectangle. (Hint: What do you notice about the slopes of adjacent sides)

4. Definition: A rectangle is a parallelogram with congruent diagonals. Using the definition of a rectangle, prove that Quadrilateral 1 is NOT a rectangle. (Hint : Find the lengths of the diagonals, what do you notice?)

AC: \qquad

BD: \qquad
5. Quadrilateral 2: Plot and label each point. $\mathbf{A}(-3,-3), B(1,1), C(5,-3)$, and $\mathbf{D}(1,-7)$.
6. Definition: A parallelogram is a quadrilateral with two pairs of opposite sides that are parallel. Using the definition of a parallelogram, prove that Quadrilateral 2 is a parallelogram. (Hint: Find the slopes of all the sides)
$A B$: \qquad
$B C$:
CD: \qquad
AD: \qquad
7. Definition: A rectangle is a parallelogram with 4 right angles. Using the definition, prove that Quadrilateral 2 is a rectangle. (Hint: What do you notice about the slopes of adjacent sides?)
8. Definition: A rhombus is a parallelogram with all sides congruent. Using the definition, prove that Quadrilateral 2 is a rhombus. (Hint: Find the length or distance of each side.)

AB : \qquad
$B C$: \qquad
CD:
AD: \qquad
9. Definition: A square is a rectangle and rhombus. Using the definition, is Quadrilateral 2 a square? Why?
10. Theorem: The diagonals in a rhombus are perpendicular. Using the theorem, is this true for Quadrilateral 2? (Hint: Find the slopes of the diagonals.)

AC: \qquad
BD: \qquad
11. Quadrilateral 3: Plot and label each point. $\mathbf{A}(-3,0), \mathbf{B}(-2,3), \mathbf{C}(4,1)$, and $\mathbf{D}(3,-2)$.
12. Definition: A parallelogram is a quadrilateral with two pairs of opposite sides that are parallel. Using the definition of a parallelogram, prove that Quadrilateral 3 is a parallelogram. (Hint: Find the slopes of all the sides)
$A B$: \qquad
$B C$: \qquad

CD: \qquad

AD: \qquad
13. Definition: A parallelogram with 4 right angles is a rectangle. Using the definition, prove that Quadrilateral 3 is a rectangle. (Hint: What do you notice about the slopes of adjacent sides?)

14. Definition: The diagonals in a rectangle are congruent. Prove that this is true for Quadrilateral 3. (Hint: Find the length or distance of each side)

AC: \qquad

BD: \qquad
15. Quadrilateral 3: Plot and label each point. $\mathbf{A}(-6,-13), B(-3,3), C(4,5)$, and $D(6,-2)$.
16. Definition: A kite is a quadrilateral with two pair of consecutive sides that are congruent. Using the definition of a kite, prove that Quadrilateral 3 is a kite. (Hint: Find the length or distance of each side)

AB: \qquad
$B C:$ \qquad

CD: \qquad
AD: \qquad
17. Theorem: The diagonals of a kite are perpendicular. Prove that the theorem is true for Quadrilateral 3. (Hint: Find the slopes of the diagonals, what do you notice?)

AC: \qquad

BD: \qquad

