Connecting Algebra \& Geometry Through Coordinates WS 1

Name: \qquad Date: \qquad
The goal of this assignment is to use the distance and slope formulas to prove statements about geometric figures on the coordinate plane. Since the purpose is to prove a statement, you must show work.

1. Quadrilateral 1: Plot and label each point. $\mathbf{A}(-5,6), B(3,7), C(4,-1)$, and $\mathbf{D}(-4,-2)$.
2. Definition: A parallelogram is a quadrilateral with two pairs of opposite sides that are parallel. Using the definition of parallelogram, prove that Quadrilateral 1 is a parallelogram. (Hint: Find the slope of all the sides)
$A B$: \qquad
$B C$: \qquad
CD: \qquad
AD: \qquad
3. Theorem: A parallelogram with four right angles is a rectangle. Using the theorem, prove that Quadrilateral 1 is a rectangle. (Hint: What do you notice about the slopes of adjacent sides?)
4. Definition: A rhombus is a parallelogram with all sides congruent. Using the definition, prove that Quadrilateral 1 is a rhombus. (Hint: Find the length or distance of each side)
$A B$: \qquad
$B C$: \qquad
CD: \qquad
AD: \qquad
5. Definition: A square is a rectangle and a rhombus. Using the definition, is Quadrilateral 1 a square? Why?
6. Theorem: The diagonals in a rhombus are perpendicular. Prove that the theorem is true for Quadrilateral 1. (Hint: Find the slope of each diagonal and compare them)

AC: \qquad

DB: \qquad
7. Quadrilateral 2: Plot and label each point. $\mathbf{A}(-5,-3), B(7,9), C(6,3)$, and $\mathbf{D}(1,-2)$.
8. Definition: A trapezoid is a quadrilateral with one pair of opposite sides that are parallel. Using the definition of trapezoid, prove that Quadrilateral 2 is a trapezoid. (Hint: Find the slope of all the sides.)
$A B$: \qquad
$B C$: \qquad

CD: \qquad
AD: \qquad

9. Definition: An isosceles trapezoid is a quadrilateral with one pair of opposite sides congruent. Using the definition of trapezoid, prove that Quadrilateral 2 is an isosceles trapezoid. (Hint: Find the length of the two sides you think are congruent.)

Side 1: \qquad

Side 2: \qquad
10. Theorem: The diagonals in an isosceles trapezoid are congruent. Prove that the theorem is true for Quadrilateral 2. (Hint: Find the length of the diagonals)

AC: \qquad

BD: \qquad

