Name \qquad
\qquad

Remember this worksheet is just a guide to help you prepare for the Unit 5 Test. You are

 responsible for all material covered in Unit 5. Use your Unit 5 Quiz, Notes, and Homework Assignments to also help you prepare for the Unit 5 Test!1. Which one of the images can be rotated to match the letter J on the left?
(a)
(b)
(c)
$J 1 \gg$
2. Which one of the images can be reflected to match the letter Z on the left?
Z
$\stackrel{\text { (a) }}{\boldsymbol{\sim}} \underset{\sim}{\text { (b) }}$

How many lines of symmetry does the given object appear to have?
3.

4.

Name the transformation that maps:
5. $\triangle \mathrm{ABC} \rightarrow \Delta \mathrm{CDE}$

8. In the diagram, $\ell \| m$ and $\triangle \mathrm{ABC}$ is reflected first in line ℓ and then in line m. This set of reflections is equivalent to doing what kind of singular transformation?

9. If ℓ and m were intersecting lines, and $\triangle \mathrm{ABC}$ was reflected first in line ℓ and then in line m , what would the resulting transformation be?

Describe any rotations (of 180° or less) that will map each figure onto itself.

13.

An isometry is a transformation in the plane that preserves length. Identify each transformation and each isometry. (Preimages are unshaded and images are shaded.)

16.

17.

18.

Draw the image of each figure, using the given transformation.
19. Translation $(x, y) \rightarrow(x-8, y-3)$

20. Reflection across the \mathbf{x}-axis.

21. Reflection across the line $\mathbf{x}=\mathbf{- 2}$

22. Reflection across the \mathbf{y}-axis.

23. Rotation 180° about the origin

25. Translation $(x, y) \rightarrow(x+9, y-8)$

Rotation 90° CCW about the origin

24. Rotation $9 \mathbf{0}^{\circ}$ clockwise about the origin.

Rotation 180° about the origin. Reflection about the line $\mathbf{y}=\mathbf{x}$.

Examine the diagram. Note that \underline{B}^{\prime} is at the same point as B, and $\underline{C^{\prime} \text { is at the same point as } C, ~}$ although these are not labeled.
27. Is this an isometry? Is it a dilation?
28. What transformation has taken place to map $A B C D$ to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$? Be specific.

29. Write the function/rule that maps $A B C D$ to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

Specify if the following equations or graphs are even, odd, or neither.
30. $y=2 x^{3}-4$
31. $y=5 x^{6}-4 x^{2}$
32. $y=10$
33. $y=\frac{1}{2} x$
34.

35.

36. Given $f(x)$ is odd and point $A(-4,19)$ is a point on the function. Name another point on the odd function.
37. Given $h(x)$ is odd and point $B(16,-21)$ is a point on the function. Name another point on the odd function.
38. Given $f(x)$ is even and point $C(-14,-16)$ is a point on the function. Name another point on the even function.
39. Given $f(x)$ is even and point $D(34,40)$ is a point on the function. Name another point on the even function.

Cumulative Review:

1. Graph the inequality: $2 \mathrm{x}-\mathrm{y} \leq 4$

2. Solve the system of linear equations by using the method of your choice.
$-3 x+4 y=-18$
$x+2 y=-4$
